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FLUTTER AND OSCILLATING AIR~FORCE CALCULATIONS FOR AN
AIRFOTL IN A TWO-DIMENSIONAL SUPERSONIC FLOW
By I. E. Garrick and S, I, Rubinow

SUMMARY S

A connected accounbt is given of the Passlo theory
of nonstationary flow for smull disturbances in a htwc-
dimensionel supsrsonic rlow ard_of i1ts apnlicqtion to
the determination of the aerodynamic forces on an ogscil-
lating alrfoil, Further applicution is made to the pro-
blem of wing fluttor in the degraes of freedom -~ torsion,
bending, snd alleron torsion. HNuwzerlcal tables for :
flutter calculations are provided Tor various valucs of
the Mach number greaoter than unity Results lor bending-
torasion wing flutber are shown in fl“uTOS and Ciscussed.
The static instabilities of diverzonce and allaron T —
reversal are sxamined as is n ona-dsgroc- af frcaﬂon case

of torsional oacillatory instability. L=l IT T

INTRODUCTION . T s

The problem of fluttzr or asrodynamic lustubillby
for high-speed aircraft is of ccnsiderable importance
znd hence interest is directsd to the ssradyfismic problem
of the oscillating airfoll moving lorward at high speed,
Although for conventional aircraft the subsonic ‘and the
near-sonic or transonic speed runzes are still of main
Interest, the purely supsrsonic snecd_range 1s becoming
:n,roa31nqlv signiricent. i
A thecrstical treatment of ~the oscillating airﬂoil,
of infinite aspect ratio, moving at superscnic speed )
has heen given by Possio (reference 1). This Lreatment

is bused on the thesory of small psrturbations to the -
main stream, thus 1s essentially an acoustic thecry, and -
leads to linearizaticn »of the equabion satisfied by the
veloclty potential. The airfoll 1s thersfors assumea to
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be very thin, at small angle of attack, snd the flow 1s
assumed nonviscous, unseparated, and free from strong
shocks.,

The smell-disturbance linearized theory, being much
leas complicated than & more rigorous nonlinear theopry,
1s to be regarded as an expedient which allows an Initial
theorsetical solution., The theory permits the occurrence
of weak (infinitosimally small) shocks and thus the basic
trends and effects of the parameters of the simplified
problem can he indicated. The theory reduces to that of
Ackeret in the stabtionary (static) case eand, like 1%,
is not expected to be velld too nesr M = 1. In view of
the restrictions and assumptions in the analysls lmportant
modlifications may be required in csrtaln cases for thlck
finlte alrfoils, but even here the simple theory for thin
wing sectlons may serve as a basis.

In additicn to Possiols brlef work an equivalent
extended treatment has been glven by Borbely (refer-
ence 2) which utilizes contour integrations to carry out
the scolutlion of the pariial differpniial eguation for
the veloclty potential according tp the Hsavigide operator_
method or Laplace btransform method. KRecently, enother
equivalent treatment has been gilven in England by Templs
and Jahn employing the method of characteristics, Im
reference 1 & fow curves are glven for the asrodynamic
coefficlents but no numerlcal valubs are tabulated.
Reference 2 contains no numerlcal results. Temple and
Jahn recognige the lack of numerlcal rosults and supply
some initial caleulations for the functions neoesaary
for flutter calculations,

A paper has recently appeared by Schwarz (rofer-
ence %) devoted to coxputing end tabulabting ths koy
mathematical functions that arigse ia the theory. The
present paper makes use of refercnés 3 to supply more
extonsive numerical tables for application of tho theory.
The formulas of the theory are recast 1n more famlliar
form for application to the flutter problem and a series
of calculatlons on bonding-torslon flutter are carried
out and discussed. The performaendid of simllsr calcula-
tions for wing-alleron flutter is indicated. BRrief
dlscussions also are given of the static instabllitles,
divergence and alleron reversal, and of a one-degree~of=
freedom torslonal oecillatory instablllty.
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For nomplsteness, a connected account of the Possio
theory 1s presented since the original presentation in
Italian 13 quibe terse and also since 1t 1ls bellsved
thas this treatment 1s the simplest and most sultable o
for scneral extensions. The extension of 1ts applica- ' I
tion to include the aileron is given. -

ATR TORCTS AND MOMENTS ON AN OSCILLATING AIRFOIL MOVING
AT SUPERSCNIC SPEED IN T.WO-DIMENSIONAL FLOW
- Differential Equation for the Velocity Potential
The differential equatlon satisfied by the velocity

rotential in fixed coordinestes in tne case of infln*tesﬂnal
disturbances is the wave esquation ) - -

5 e
!
]
o
=

0} (1)
S ' : : : -

1
—
oc

where ¢ 13 the velcelty of sound in the undisturbed
madivm, (For the adisbatic equatlon of state - - o

#eferred to a system of rectangular coordinates
moving Ierward at a constant supersonic speed v in o
the negative x-direction the wave equation satisfied N
by the velocity potential in two-dimensional flow becomes

/v \2 2 52 R -
o IR k= Rt=STRE
Sx o352 y

It is propossd to treat the eoffect of a_slightly
camhered thin airfeil aoving forward at a. supersonic
aneced v at small (znfc) ancle of attack as that of a
distribution of small disturtances placed along the ST
x~axls and hence to utillize eguation (2). ‘The velocity - =~
comuonentas In the x- and y-uirections relative to : o —_——
tiie moving alrfoll are, respectlvely, T

+
Glr\)
id
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which may be considered the additional components to
the maln stream due to the disturbance created oy the
vpresence of the alrfoil. Relative to cocrdinates fixed
in space the velocity components are v + vy and vy

A

L

Effect of a Sowrce - . . : S 2R

¥quation (2) is linecsr and sdélutions are therefore
additive, &An important particular soluticn of squg~ B
tion (2) having the propert; of a 'source pulse is =

Alg, M. T) e
g, = = = - == (3} . e

Vet =12 - [x =& - vis = 12 - (v - 0)2

This solutlon may be consldered td glve the effect at a
point (x, y) at time t of a diisturbance of magni- -
tude A originating at a polnt (&, ) at an earlier . -
time T. The potential ;d’o is thus a retarcded potential

and the elapsed time at (x, y) =ince the creation of ) -
the disturbance is 1 =t -~ T, '

Unlike the situation for a subsonic flow, For g - -
superaonlc flow the effect of tne Gisturbance is propa-
gated only down%tream, that 1s, the pofnt oeing
iniluenced (x, v) is alwavs considsred to be aft of the
point of disturbance (&, 7). Equation (3) is thus
valid in the sangular reglon with vertex at (&, vy) aml
boundsd by two straight lines. makinsy the Mach anzles

&
'l% = +sin"l% with resnekt to the x-axis. '
(See fig. 1.) Upstream from thls mngular region the .
value of ﬂg is zerc, It follows. also that disturbanﬁss
in the wake need not be considered' and the solution to

'.'-i|| [E

..h;‘..i i

tu = fsin

D

kit
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the boundary problem may be attempted by a distribution
of potentials of the type ﬂo taken along the projection
of the airfoil on the x-axls.

A disturbance at (&, m) created at time T 1is
first felt at a point (x, y) after a certain time Ty

has elapsed. The point (x, y) penetrates bthe wave

front of the disturbed region and beccause 1t is moving
at a speed greater than that of the wave front it
emerges from the disturbed region at a later time T,.

Thus, the duration of this inltlal disturbunce at
(x, ¥) 1is 15 - T7. (Bee fig. 2s) The transition

at (x, y) from a region of qulescence to a region of
disturbance and vice versa 1s assoclsted with the o
vanishing of the denominstor in equation (3), The :

values of T and To for a disturbancse created on o

the axis 7 = 0 are thus glven by

H{x -~ &) ¥\/(x - ¥)2 - (M2 - i)
c(ME - 1) -

T1,2 = I

where the minus sign ls associlated with Tq and the plus

sign with o and where M = g. It may also be observed

that a unegatlive gquantity under the radical sign in
equation (3) is to be interpreted as assoclated with an
undisturbed region. (that 1s, with & = 0). T

Potential Tor a Distribution of Sources
The total effact at any point (x, ¥) Is the sum

of the effects of dlsturbances originating between the
leading edge & = 0 and the intersection of the Mach

line through (x, v) with tho &-axis
=& =x - yh2 -1

(since only disturbances created forward ¢f the Mach
angle regilon can affect (x, 7); see fig. 3).
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The total potentlal at (x, y) at any time t 1is
thus given by i : o '

172 A 6. b ) | ST
-7
Hix, 5 8) = & O ar a .

0 Ty \/02T2 - (x -& - vr)2 - yz =

1 SINTE Ag, 0, t-T)

Y — ar dg (5)
V@;-cato e V(T;—Tl)ﬁa -T)

Boundary Condltion and Strenghth of Distribution

The function A4(§, O, t - T) giving the masnltude
of the source distributlon 13 now tc be determinad by
tne usual boundary ccndition of tangentlal flow elong
tho girfoil. If the ordinate of any polnt—o¢f the mesn -
line defining the 'airfoil 1s givsn as. y = y,(x, t) the 2

bonndary comiition may be written

(:_'g = W‘(.X., t) - ?..I . . i:
0¥/ =0 - dab : '

A,

=V —— 4 . '.(65

where w(x, t) thus represents the vertical velocity

induced by the source distributicrn in crder to realize

tangential flow at the ailrfoll boundary. (In the

statlonary case - Ackeret treatment -the two surfaces =
of the alrfoll may be-considered as acting independently,
which can also be done for the nonstationarv case. - _ -
However, for the purrose of obtalniing the cscillating *
forces in the linear treatment 1t 1s s ficizni to—con-

sider soparately the uoper and lowspr sides of anly the

mean lline.) . :

l ii-r-l 't

;o
AR Bl
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O
The evaluation of ~g. as y approaches zerd may

Oy
be readily obtainnd by use of the variable " 6 Instead
of 71 vwhere = (12 - 11) cos 8 + 15, + 7T1. This

substitution in equatlon (5) yields

&1 v/ To+Tqy TouaT

2 1

Q’:":;:_—_']:._—"__“"::' ]" AlS, O, 5- 1" Z cos §,;d6 4g

VV2 - o2 2 2
v0 0

Ry differentistion with regard to y and with the aid of
an integration by psrts e

. .
of oL __ %1, ST
0y W2 - o2 by cyMe - 1
pp— A I oA g'sinze 46 az
Vo2 - o2 o2 - 1 Jo o ©°f

since & = x - yWI2 - 1, there results in the limit
as Yy approacies zaro on the positive side, the important

relation
a¥ N
- = -3 A(x, 0, )
OF/y=+0

or, briefly,

Alx, t) ==~ % w(z, t) (7)

for ¥y avprcaching Q on the negative side .an
equal and opposite result is obtained and hence the _
uistribution of singularities to be utilized to replace
the airfoil is of the scurce-sink type. Thus # is to
be understood in the subsequent ansglysis to be prefixed

= Tt
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by a % sign, + for the upper side and -~ for the
lower side. : S S

The total potentlal for y =
by means of equations (5) and (7)

1 wtf'ra wig, t - 1)

el . _ dr ag (8)
\/ﬁz - lJO Ty \/QT - Tl)(Tg - T)

Blx, t) ===

where, from equation (L) »ith 7y =0,

T - ?_:-_:,
T = . .
L e M+ 1
and
X - :é_:i 1
T =
2 c M -

Applicaticn to Osecillating Alrfoil

The general result glven by equation (8) may now
be applied for definiteness to the case of an alrfoll
performing small. sinusoidal oscillstions in several
dogrees of freedom., Let the wing undergo ‘the followi
motions: a motion dus to displacement h (veloclity h)
in a vertical directlon; a torsional motion consisting
of a turning about x= x5 Witk instantaneous engle of

attack a; a rotation of an aileran about 1ts hinge at~
x = xq with instantaneous alleron angle méasured -

with respect to - a. (See flg. h.)

In accordance with esquation (&) the verticgl veloclty

at any point x of the alrfoil situated at 0 S x & 2b

(of chord 2b and leadlng edge at x 2 O)‘ is easily
recognized to be i

wix, t) = —{;.+ va + (x - xo>d + éﬁ + (x - Xl>6] (9)

where the [p-terms are ta Le 1nterpreted as zero for
x < Xy (and where the minus sion 1s Introduced because

0 may now be expressed
as

f

LT

t

Pl
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the vertical velocity w 1is positive upwards whereas
*he terms within the brackets are positive downwards),

It is convenlent in treating sinusoidal motion to
utilize the complex notation

h = hhel®®
a = aoeimt (10)

where hyg, ap, and By are complex amplitudes and
hence include phase angles. -

Since the further analysis 1s concerned only wilth
exponential time variatlons of the type given in squa-
tion (10), the function w(g, t - 1) occurring in

equation (8) is of the form W(g)eiw(t"T), which may

also be written for convenience as w (&, t)e~1®T, The _
potential @ glven by equation (8) may now be written as

X N
#(x, &) =-*1£é:::'r w(&, t) I(&, x) a& (11)

where . o A
)TZ
1 e-ioo'r
I(g, X) - ar

T(\_Tl \/('r - Tl) (1'2 - T)

The integration with regard to T may be readlly per-
formed by substitution of the variable © where
21 = (1o = T7) cos 8 + To + Tqs Then '

v - o R —
I(é, X) — % e-i(ﬁ(Ta"—Tl)/aJO e-iwCOSG(Ta-'Tl)/a de



10 NACA TN Ho. 1155

With T and Ty replaced by thelr values as glven for

equation (8) snd with the ald of the Bessel function
relation '

1 " iN 8 i

= =-1AC0S —_

= e as = :_ro(k)
O !

1t 1s recognized that

W i
N _ 1‘055’&3 ﬁ'M—l— * -5 o
I(g, x) = e =1 3y (- e (12)

Throughout the subsequent analysis it 1s convenisnt
to employ the variables x and (& in a new aschnse to
mean nondimensional quantitics obtained by dividing the
0ld variables by the chord 2b. The retaining of ths
symbols x and ¢ for the nondimensional variables
should lead to no confusion, !

The potentlial @ of equation (I1) is then

b
Bx, t) = ﬂ>.[ U“+h+dﬂy xda+vﬁ+aﬂ; Xy, 1ﬂbx)dF
0 _

\/ﬁ -1
(13)/

where with the introduction of tha important frequcncy
parametors .

418 ‘

i
']
}

the function I(&, x) Dbecomes

- =l (x- . v :

b

P

i
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Thus, I(&, x) is a functicn of the varlable x - & and

of two parameters M sand w, or, alternatively, M

and k. A

It 1s desireble to express
sum of the separate effascts due
the airfoll associlated with the

the potentisl ¢ as the
to position and motion of
individual terms in

equation (12%). Thus R
Blx, t) = By + Py + fy + Bz + ¥ (1) o
where <
By = _ﬂ:’_.____. va[ (&, x) dg e - —
\/Mz - 1 Jo -
X _
# = T/Eliji“i hJ I(g, x) dg o
0 _
2 X :
Py = —2— & [" (g - xg) TMz, ®) _
WE -1 g i
X
Py === b | IG, x) & L
\.’i\ia - 1 e
L
o= B (e_e; - x1) I(&, x) 4% _
\,/u -

1X1
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Forces and Moments

The basic vressure formula 1n the theory of amall
dlsturbances 1is L=
ag : -

P= P - =

which in the present case of the moving alrfoil may be -
expressed as ; -

where p 1s the density in the unfisturbed medium. The
local pressure differsnce on the airfoil surface betwoen
the upper and lower surfacss st anv polnt x (nondimensional)
is B

g . oy
pt = -apkég + = -E (15) 3
3t Zb Ok, B

The total force (positive downward) on the alrfoil is

1 : -
2b [, n! dx : =
t O : : =

rL .
= —EpV'[a o dx - Lpb Eﬁ ax (16)
0 ox ; _ .

% Jo i

o
1

The moment (positive clockwigé; f¢o. i) on the entire
alrfoll about any point X4 is - - = o =EE

It

L
My L[."DZ/ (}{ - x.O)pT dx : - i
20 : o=
Nl :

~lipbv
/O
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Similarly, the moment (positive clockwise; fig. Ji)
on the alleron about the hinge polnt x; 1is

[ - =)
Mo = NG (x - x1)p! ax o o S
X1

1 1
-Lpbv %g(x - x1> dx - prijx ﬁ(x - x1> dx (18)
1

1

[ J{l

In the further reduction of equatlions (1€) to (18),

wlth the potential P replaced by its separated form
given in equation (1), the following sets of integral
evaluatioas are required: ' '

J $ax = —Z2 . varg (M, k)
0 ox Aie - 1

1}

[ - —J:_—:_afrz(m, k) - x,rq (M, k)]
Jo o= A2 -1 - A

[ g - 2b
/ —£ gx = == vBtl(M, ¥, xl>
L‘Xl QX '\/f;l - 1
1 6¢ s
3 _-__Ip ; .
f gL ax = = bu,(h, Xk, x1)
x d
1
1L b
/ 5?1’0; dx = -V-f—{%:::;: VCIl"a(M, k)
710) i

L 5 _
Jo %_dx = ‘v‘g%—% &E— r3 (M, k) = xgro(H, kﬂ
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_ :/K:agb; = v tg{ﬁ, k, x,)

2 1

1
JX - :

~ ¢
= =0 va ql(M, k)

Ve =1

ARl ’
b= . 1L . )
= -—...-’:E.—._::—: O’.[‘z qz(M, 1{') - Xq ql(M, kil

vie - 1

-2 [y (55 ) o ()]

YHZ -1

= ;M%P% p[% 52<.?v'_7, k, xt,_) + Xq tZ_(.M’.K’ x])]

2 1 :
T Ve 3 9, k)

: .11 1
——tre— o.té‘ qB(M, k) - z X0 qZ(M, kﬂ
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71
2b '
gxdx:___—.—_

11 >
f géxdxz___brb____

)
= Vi - 1
1

1
o,
llﬁ ('sc -xl> éx
L,
‘llé_;"@c—xl) dx

v

T e A i

1 .

B [? 83 (M, k, xl) + % %7 t3<H’ k, xl\]

VM.Z__:___]_ va p1<M, Iz, xl>

]

L DY ) i -

1ﬁ,§2 "y a -?_ P?_(M, Im,xl) - Xp pl(z‘:_', K, xq
2

__,:r.‘-IF)::.“ Vﬁ S:L(M’ k, Xl)

vhi€ - 1
b2 1 g

\/“,1 = E = 32(7;1, k, xl)

e~ - f



16

jaR
J 2, (X
x1

J.

11

/ Aol=
vEL

X1

Ve - 1

2

V2 -1

2b
\/i"‘.'lz = 1
)i .
Lo
vie - 1

- NACA

Tt

va %‘-QZ(M, Kk, xl)

N
f>68§

(M ’

\

k, xl>

vp %‘ "*22__(1“’ k, __X1>

Mo,

1158

& A pE{”’ k:xl) - %xo pa (M, k, xl)_]

The functions defined by the iforegoing integral
evaluations are further dlscussad 'in the tollowinge sec-
tion; rirst, Lowever, the force arid moments {equations (16)
to (18)) are given in their final forms &s

—-

P =--—L!£—t—)——[ (va +h - abxoa)rl + . ab(dra + h - 2b.{00;)r2

[P,

vi2 -1l _. e . - .
o, T ' G
+ Lhb“d —25— + vapt + L|_bvﬂ1.m + moa 25] (161)
_ Aon2 Q-
Mg =~ vﬁé:fz {v(va +h - beoa)ql + ?b(;_va +-h = 2by0a) 3
o 4 =)
+ Lbed i o v‘-B(S1 + A-;tl) + gbv}i’\—i— + xlt&>

, _
5 bz
6 2/

- Z;bde
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I

pl + 2b(2va + h - 2bxoq>__.

P— Vﬁa‘lf— e

+ L% Eéé + v2(:sl + Ihvf 82—2 + L;.bab' -8—6-3-] (181)

fleducticn and Evaluation of Foregoing Integrals
It 1s convenient to introduce the substlitutlion

u =x - & and to express the function I(&, x)
(equation (12')) as : . 2

(g, x) = I(u) = o= 1vu Jo<% u> (19)

The various functions defined by the foregoing sets of
integrals may now be expressed as follows:

i
ri(M, k) = I(u) du )
(0 '
Ll px
ra(M, k) = / L/ I(u) du 4dx
w0 Ud
nl Ax . : »
rs(M, k) = %L L[ (x -~ u) I{u) du dx :
w0 vo . . B
Nl
ay (M, %) =/ w I(u) au
v0

{1

l - . —— . : ‘_:
L[ fx(x - u) T(u) du dx =
QO _ _ i

{11 o . S e
a. (M, k) 2, k/ x I(u) éu dx ' o

1

qB(M, k)
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1 : ;
= f <u - xl) I(u) du ' -
WXy : : =

M1 b'e

2 (X - Xl) I(u) du dx )
X1 110

1l X . : —
= 6[ (x - xl)(x - u) I(u) du dx —_
U.Xl 0 B - .o

.[) I(u) da C s

0

d[ —&l Jﬁ o
= u) duadx -

1l*il X : -
/ f = -;u) I{u) du ax Soe

1—x1 ) -
= [ u I(u) du - =
Y0 ) .

Y1 "'-A.l ).K
= / / u) du dx
..{l

1]

= X(C .- u) I(u) du dx —
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Borbely (reference 2) has shown by means of - -
reduction formulas that the six r- and gq-functions may = —-
e obtalned from a single integrsal.  In a similar manner
1t may be indleated how the foregoing 15 functions may
be obtained from the evaluation of the same integral.

The reduction 1s accomplished in two stages. First,
conslder integrals of the following type:

1
£y, = £ (M, T) = I(u) v du

0

£1
- 1
gy = f}\<M, wxl) = a1 T(u) vM du > (20)
_ - plexg
- _ 1
hy = fXLM, w(l - xlX} = 1 I(u) v du
(l - .Xl> 0

. Lo
By 1integration by parts it can be readily verified that
the following relations hold '

I'l-fo
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Pp = Qp ~ 2Xrp

p5 = QE - 5X1P
£, = (1
s, = (1
63 = (1
sy = (1

3

+ x3(go - 281 + &)

+ g (gg “_5?1 + 585 - 8s)

x1>h
)20 - 1)

xl)«<ho ~ 2hy + hp

x1)“hy
2)?(ag ~ 2o)
xﬁ”@ﬁ;*Bh.+hﬁ_

The final stage in the reduction of these functlions
is to utilize the following recurslon formula (refer-
ence 2) obtalned by integration by parts:

s 2 (3). 1 oy ()

Me . -

B
<

M

]- S Aot .
-wfx(M, w) =

where A 21 and T

interpreted as zero.

1

-+

+

1(1 - 2N) £y, (8, @)

a - hf \ q(m,'ﬁ) (21)

-~

wlth a negatlve subscript 1s to be

it
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Tre function f)\(M, ©) may clearly refer also to _
ths foregoing g~ and h-functiona, if @ 1s replaced T

by the appropriate parameter; namely, wxo for 8\

and (1 - Zg) for . (See equations (20).) The ) _ -

recurslon relation (equation (21)) thus reduces the o
varlous functions to the singls function .

£o(M, &) = :_]zj e~1u Jo(iw‘i) du (22)
o .

W

which 1s therefore the only iuntegral needed in the -
evaluaticn of the forces and momants.

The Important integral in equation (22) has been
recently made’ the subjsct of a nmatkematical investlga-
tion by Schwarz (reference ir). =Schwarz gives tables
of the values of its reel and imaginarv p¢rts to elght
decimal pleces for O S & @ £ 5 and for - : <10 for

conveniently small intervals. For v;lues of T >5 not Lo
given in Schwarz! tables, the fuaction F may he S
evalugted by means of tne foWLowlng gserlies development C
(reference 2):

(M, 5) = o~1F LQ ) Ba(@) + 13,4 (5] @)
0 B 2nn;(2n+ 1)~ L ]

Table I gives values of the functions f£n(M, ®)
based on the tables of Schwarz and cn equation (23) for

r
selected values of the Kach number M = lQ 2 10 2
5, 10 oW 7’ 3

2 5 —,s and 5 and for varicus apprapriate values S e
1
of ® or i ). Later use is made of fhe values given

2

n
A4

in table I for obtaining tables for flutter calculstions.
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EQUATICNS OF MOTION AND DETERMINANTAL EQUATION FOR -
FLULTER CONDITION

The equations of motion and the border-line condil- _—
tion of unstable equilibrium yleldlng the flutier speed
and frequency may be obtained exsctly as in the lncom-
pressible case treated, for example, in reference h.

The two-dimensional treatment (infinite aspect ratio)

is retained herein, Modificatlons due to assumed vibra-
tion modes of the finlte wing may :of course be introduced
a3 1in current practice (for exempls, reference 5). The
modification of the forces and moments due to the three- —
dimensional nature of the flow i3 @ mors diffloult
problem which remains to be studled.

The equilibrlwm of the vertlcal forces, of the
moments about the torsicnal axls & = xp, and of the

moments on tis alleron about its hinpe x = X7 ylelds
the three equatlons, : =

hM + dS_ + Sg + hOp = P
dI, + B'[‘B ““."'21’(““1 - XO)SP-]_ t h8g # alg = My (2h) -

BIg + & '»IB‘+ 2b(xl - xO>SB] + hsg

+
@
Q
w
1l
=

where the wvarious Darametcrs are defined in the 1list of
notatlon. (See appendix.)

In order to dofine thie border-line cconditlon of
unstable equilibrium separating damped and undamped
osclllations, the variables h, a, and B are used
in the sinusoldal exponential fcrm given in equation (10),
For the desired condition, 1t is nocessary that tlie
equations (2lL) have a (nontrivial) solubtion for Lhe
complex amplitudes ho, 5, and ;BO, or that the

following detorminantal equation hold:

1]
I
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iich Acq Acﬁ
Ay Bag Bgp| < Y (25)

bon Boa Pog

where the complex elements of the determinant in

separated form are -

&y, 8

'-th—p."l'Ll‘{'iLa

-uxg + L5 + iLL|. : e
...p_«,{ﬁ + L5 + iLé SRS e
ﬂma+fh-kﬁ& | -
QX - Brg + Mz + 1M

—u [rﬁz + 2(xq - xo)xﬁ] + Mg+ 1M

-HXy + Ny + 1Ny

) Eﬁa * 2(x - xo)xg} + N3 + 1N

- up. .2 1 L
Qﬁx p,rp + N,)- + *Né . ]

and wheres the IL!'s, M's, and HN's are deflned by the

force and moment equations (16t'), (17!'), and (18')

expressed in the following forms:
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I
!

Mg

~LipbRy Ryl 10T (%)(Ml + iMQ)‘ + UO(M%*' 14, ) +

—_—)_Lpbevzkzeiwt(%q) (Nl + 1N2) + ao(“zg* iNh) +

Hence,

=
<™
|

1 1
IJ + iL = T - '3_7_-., + = ¥
: 2 A2 - 1 ( =2 Tﬂl)
A Yl A AN

= -Liob v2k261wt!-—<%0) (Ll + 112> ¥ :ao(L‘% +—iLh) + By (15 +1Lé)§

=i
<

ﬁO(M5 + 1M6)i' > (26)

ﬁo(l% + iNé)

s |

L Rl
r—'d- 3
: o

-~ S

1 i 1
Lo + 1Ly = == -2t + — L5 - -2t,5 +
’ ¢ \,.ff-lz - 1L ? k@ k( 2
_ 1 ) 21 .
(’ .
1 1L 21 1 1
Mz + 1M, = QR 4 == e &=
3 1), \/1‘71—2—:?.1 5 43 s PN ‘,L{(an + 3 1
| 21 1/ l 1
i x :
-ZXO !—21'5 + . r, -.‘k‘ 2r2+ k111> 2
\ 1
TN TR-F S | 21

!

fall i o

B
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1
Ny + iNp = —=—= (-2p, + == p1>

1 Ly 21 i 21

= —=— - + — - - ——
Nz + 14, \/TJ-IE— 1 L3 Pz x P2 k<2P2 + . P]_)

21
_Zxo <-2p2 + = p]>‘l
1 L 21 1 21\
N+1N6=——-_—-—-—-_[- 35+—-s -—-(—-23 +-——-s>}
27 2 7 x "1/l
5 vﬁg_ 13 2 Kk .

The determinantal equation (25) with the foregoing
complex elementas 1is equivalent to two resl simultansons
equatlions and hence may be solved fcr twe unknowns. In

a ziven case the usual unknowns are the flutter spesd v _

and the flutter frequency ® or, mcre cavenlently, the
related nondimensicnal psrameters X and 1/k. The
paramcter X apvoars linesrly and only in the major
diagonal slements (wlth bars), while the parameter 1,k
apnears transcendentally in every aelement of the deter-
minsnt. Hence an obvious procedure though not the
simplest for obtainling the simuitaneois solutions of
the two equaticns is to fix values of 1/k, to solvs
for the roots of the two polynomlsls In X, "to plot
graphically these roots against 1/k, and fo note the
points of Interaecction,

In a systematic numerlical study of flutter any two
parameters may be utilized as unlmowns instead of X
end 1/k, which is often more convenient. A discussion
of such proceduro snd the use of a m3thod of elimiratlon
for simplifyins the calculaticns 1s ziven 1in the
appendix of relerence G.

The application teo ths two-degree-of-freedom subnuse
of bending-torsion flutter is treated more fully in the
following section,
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APPLICATION TO BENDING-TORSION FLUTTER

The determinantal equation in the two degrees of
freedom h and a 1s

Iy A -
ch
Aon Aaq
or _
Qi = u o+ Iy + 1%, ﬂma+1% +iqp
, = 0 (27)
~pxg + My o+ M QX - prg® + My + 1M,

The two equations In X obtalned by equeting the real
and imaginary parts sevarately to zero are

OhQaX‘z + E)a(];l - u) +ﬁQh(M5 - LLP'CIia)}X + Cp = 0

and : i . - . % (271)

(Pln + O )X + 0p = 0

where

°r = “§%0<M1'+'L5> - (3 - ”ra2>:" L7g° - “xaé] *Dr

and )
Cr = pix <M + 1) - M - Ior2| +0D
I a\M2 l = 2Ty
whare
Drp = InMz - IgM; - LM + LM,
and

Dt = L]-ML]. - L}.LMl + LEMB - L§M2
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For convenience in numerlcal tabulatlion, it 1s
desirable to introduce primed quantitles, independent
of the parameter x5, defined by the followlng relations:

N
Ly = L3! - 2xgL;
L), = LLL’ - 2x4Ly
My = Mp' - 2xgLy
Y (28)

= | S,
M2 M2_ 2XOL2

M, = M;! - 2%, L(er + Ig') - 2xo;,l]

M =M - 2ch BM%‘ + 1) = 2xgL,|

In table II convenient axpressions for the quantitiles
H ! '
l’ L2, L§', Lh" Ml' MZI, M5 s &and Mﬁ are
given and tabulated together with the canbinations

! )
Mi! + L5 and M,' + Lﬁ . Clearly these quantitiles

depend on the function f5 given in table I and hence

the tabulation 1s made for the same valuss of M
and 1/k (or ®). In addition, table II contains
values for the quantities Dr and Dy which, in fact,

are independent of x5 and may be expressed as

D = ! - ! 1 - !+ 1 1
D+ = I, IMLY 4+ LM - T,'M
I lM Lu ! 215 % 2

The numerical application in the case of bending-
torsion flutter has béen performed for .various selected
exsmples. In most of the calculations the numerical
procedure was to fix values of l/k eliminate X, and

-,
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solve for the parameter =xg. Inhterpolation was also

used to obtaln additional points in order to improve the
falring of some of ‘the eurves. Values of 1/k 1less

than 1 did not yleld any flutter polnts in thils
procedure. Results are shown plotted ln a number of
figures (figs, 5 to 20); however, before these figures

are discussed, 1t 18 desirable to explaln the significance
of the parameters and the numerical values assigned to
them, '

The parameter p may be cansidered to signify the
wing density and three selected ivelues 3,927, 7.85l,
and 15,708 1in the order of incraasing wing density have
been mainly used.in the calculutions. (These values

correspond to values of .% = 5, ‘10, and 20 1n ths

notation of reference li,) Alternatively, an increase
in p may be interpretevd as an increase in altlitude for
a fixed wing density. The parameter u may be expected
to range up to high valunes for gctual supersonlc wings
et high altitude. Only a few cglculatlions, howevsr,
have been made for high valuss of 1 (w = 73454,

1 .

= = 100; sse Tig. 18).

The narameter whﬂua is the ratio of tge_wing

bending frequency to the wing tcrsional frequency and
may be expected normally to be less than unity. The
three values 0, 0,707, and 1 have been largely used in
the caloulations although other walues up to 2 have
also been studfed.

The parameter X, represents the position of the

elastic axis measured from the leading odge and the three
values O.l, 0.5, and 0.6 represent, respectively, posi-
tions at 40, 50, and 60 percent chord. (These values
correspond to values of a = -0,2, 0, and 0.2 1n the
notatlon of reference [i.)

The parameter X, represents the dlstance of the .

center of gravity from the elastlc axls, For example,

Xy = 0.2 représsnts a posltion of the centsr of gravity
18 percent of the chord behind thi elastic axis. In
many of the calculations x, has been regarded as
variable. © - = ' i o '

L
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The parameter rg, 2 represents the radius of gyration

of the wing about the elastio axls and has been ept

fixed at the value g2 = 0.,25. - X —
The ordinate in fi ures 5 %o 20 is the nondimensional

flutter coefficlent v/bw, where Wwy 1s a convenlent

reference speed, This coefficient 1s also a function
of the Mach number M = % .and several values of M
have been employed 1In the calculations, o

In a plot of the flutter coefficilent v/bw,

against M, stralght lines drawun from the orlgin at

angle O and interseecting the curves may be given an

Interesting interpretution (fig, 17). The slope of the
\% c bw

line is given by % = or cot & = —Eg. Thus,

v/e . bW,
cot 6 is directly proportional to the product of the
chord and the' torsional freguency. The question of
whether at a glven value of M £fthe value of . bwg

which will just prevent flutter 1s also sufficient to

prevent flutter at neighboring higher wvalues of M 18 -
answered by the simple criterion of whether cot & o '
increases or decreases., In figure 17 two typical

flutter curves are shown. In curve B the value of bw,

just necessary to prevent flutter at a speed corresponding
to the value of M at Py, 1is insufficient to prevent

flutter at any higher value of M for which the flutter
curve is below the stralght line OP2. For the type of

curve A a maximum value of & occurs at the "design
critical points! Py The values of bw, just necessary

to prevent flutter at a spesd corresponding to the
value of M at is also sufficient to prevent flutter
at all higher speeés.

The following salient facts may be extracted by )
inspection of the figures. Flutter exists or i1s Dossible
for various ranges of the parameters but, in general,
compared with subsonic cases the ranges of the parameters
yielding flutter are more restricted,

The chordwise position of the aserodynamic center,
the center of the oscillating pressure, is an important
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factor in the conslderatlon of flutter, In the simple

theory the midchord is the aerodynamic center for .
M >> 1, Por subsonlic speeds, M << 1, the linearized
theory indicates the quarter=chord position as the sgero-
dynamig center., It should be expected that in the
transonic region near M = 1 the aerodynamic center
may shift consildersbly. From this point of view alone
concluslions drawn from the simnle theory for the range
near M = 1 may require large modifications. The -
nature of the modifications may be roughly inferred by

further experimentel and theoretical study of the

behavior of center-of-presasure locatlons.

For low values of the ratio of bending fregquency to

~

Whn _
torsional frequency 5; Z 0 the posltion of the center

of gravity relative to the aerodynamlic center is Important,
For center-of-gravity positions forward of the midchord

no flutter exists, whereas for nositions behind the mid~-
chord there is a sharp decrease 1n the flutter coeffl-
clent from infinity; the position of the elastic axlis
influences the value of the flutter coefflcient in this
regig?,)gorward positions being more favorable (figs., 5(a)
to 16(a)l.

® ' ’
For values of EE = 1 the position of the center -
a
nf gravity relative to the elastic axls becomes of more .
Importance. For center-of-pravity positlions forward of
the elastic axls no flutter exlsts, whereas for positions
behind the elastlc axis flutter does occur, and a relative
minimum coefficient appears for center«of-gravity posi-
tinns only slightly (a few peroent of the chord) behind
the elastic axls,
w
The intermediate case, for which 'EE = 0,707,
a

shows a blending of the effects 1in which the center-
of-gravity position relative both to the aerodynamle .
center and to the elastic axls is significant,

In figures 12 and 1l there are shown, for refer- -
ence, some numerical values of- w/ba, the ratioc of the

flutter frequency to the torsionsal frequency.
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The effect of the wing-density parameter y 1is
rather complicated but, in general, sn increase in p
vields & corresponding increase in the flutter coeffi-
clent. For low values of wp/w, and for high wing

densities this increzse 1s expected to be proportional
- W
to +1A. In the resonance-like region near 52 =1
a
and for small values of x, the flutter coefficient is

relatively unaffected by the value of p, and in this
region the structural damping may be expected to be
particularly effective Iin increasing the flutter
coefficient.

For values of ths Mach number near unity (for

example M = 20 4 value for which the validity of the

9’ - -
theory is in question), the flutter calculations becoms
difficult to plot because of the appearance of other
branches, In some cases (for instance, Xg = 0.6) the

flutter instability appears limited to a definmite range
of speed., Calculatlioans to include damping were performed
to verify the existance of the range. (The appearance

of these other branches seems to involve values of 1/k
for which the quantity Mh is negative. The condition

of negative Mh is signifioant for the one-degree- of-
freedom instabllity dlscussed in the next section. '

A plot of the flutter coefficient against Mach
number for two values of x, 1is shown in figure 17.

The significance of the straight lines drawn from thﬁ
orlgin has already been discussed, The type of curve A
is representative of the effect of forward location of
the center of gravity and the type of curve B is
representative of rearward locabtiaons of the center of
gravity. Figure 138 gives a plot of the flutter coeffi-
clent against M for various values of the wing-density
parameter @ and for a rearward locatlion of the center
of gravity. The subsonic values for M = 0 and

= 0.7 shown on these curves and on some of the other
fiﬂures have besrn either taken from rasference 7 or
calculated in the manner outlined therein. The subsonic
and supersonic parts of the curves (figs. 17 and 18)

have been arbitrarily joined by a dashed smooth curve in



52 ITAGA TT" Mo, 1153

the transonic range. In figure 19 there is given a
sross nlot of flutter ceoefflicient against frequancy -
ratlo wy/w,, for various values of M, and in rig- .

ure 20 1s given a similar cross plot. for three valuses ) —
ni the elastic-axis paruaretsr Xqe

An indication of the effcsct of structural damping
in Increasing the flubtter spzsed in a few examples nay
be cbtalned from the following table, where gy

and g, &are the torsional and flexural damping coef-

10
flcients, respectively, and wherse M = ﬁr, no= 7,850,

-a = 0, and x, = 0.2:
/g S Zh w/wy /b0
o 0 2 0.AT73 2..38
0 .05 0 NI 2,551
0 10t 0 £28 2.6€9
« 707 0 0 17T 1.535
$ 707 .05 0 .TZl 1,553
707 «10 0 . 766 1.569
. 707 0 .05 .788 1,592 .
707 0 .10 .7@7 1.502
« 707 <05 <05 762 1.623
fTO7 10 .10 .78L 1.725 .

STATIC CASES - WTwk@ DIVERGENCE AKD ATLERON REVERSAL

It 1s of some interest to eramine the expressions for
the Torces end moments in thr 1linit case in which the
frequancy anproaches zero. gra follow then for the
mean~-line wing section the well-mown statlic-casc results
which may of course be obtained dlrectly without the
use of a limiting process, as originally tresated by P
Ackerat. Thus, with the use of tle followin: relation
easily verified from eguations (20),

1
Iim ﬁk(m, k) = -
k—»0 A+l
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thers are obtained from equations (16!) %o (18f) for
the 1ift and moments in the static case, -

—LLB_?:‘_’_—Z- a+<1—xl)p€!

Mg = bewe Kl - 2xg)a + (1 - x){1 + %, - 2;:0).3]

w2 -
Mg == (1 - xl)a(a + )

These relations for the mean-llne wing section are
now used to obtain the critiocal speeds for the static

instabllities -wing divergence and wing-aelleron revarsal

(for wing of infinite span). At the wing divergencs
speed the effective torsional stiffness of the wing
vanishes, hence the total moment about the elastic axis
is zero. The sum of the structural restoring momsnt and
the serodynswmic twlstling mowvent is

] aly + %ﬁgszi a(l - 2xo>
AR

which when equatad to zero ylelds the divergsnce speed

= bwa(M - l> 1/ xﬁr —f—i—u——

Thus, the divergence speed 13 303l cnly:for nositions

of the elastic axis behind the asrodynamic center (mid-
- chord, in the simple theory). Thls formula obviously

should not be used for valuss of M too near unity.

For comparison Lt 1s of interest to note the
correaponding result for the divergence speed in the
suosonic case, whers the asrodynamic center is (gpproxi-
mately) at ths guarter-chord point. Thus,
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D .....

v, = bo (1 - MZHAV L

where M < about 0.7.

The alleron reversal speed 1s determined by the
condition that the change 1Iin angle of attack duse towing
torsion nullifies the effuct of movemsant of the alleron
so as to yleld no change in 1ift (in rolling moment, in
thoe case of finlite wling span)., Thero are bwo equations
to be satisficd for this condition: namely,

a + \1 - 51)9'2 0

(that 1s, L = 0) and

i—;ﬁ’;——l;w - ?.xG)a + (1 - x]_)('l + xq - 2x0)p] = O )

The alleron reversal speed,i obtalined by climination
of o and §3, 1s : .

vy = oo (M2 - 1)1/1L Virg? —==

Fas Vxl

For hinge positions aft of the mldchord, the factor
l/vxl in this exoression varles from 1 h to 1.0, The

sllaron reversal speod 1s thus relatlvely wnaffrctad by
the vosltion of the hinge. In general vp may bc cxpected
to be lower than vh. i T

QW ~DEGREF~OP-FEREEDOM O3CIVLATORY IWSTABITITY

As was polnted out by »s3ip, the theory Indicates
the existence o1 a torsionsal Iunatability which may arise
for a win. having only one degr.é of froe¢dom, This
instablility 1s due to the wing being negatively damped
in torsion and is associated wilth the vanishing (and
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change 'in 512n) of the torsional damping coefficient B u
(equation (26) =

Certain conslderations for the case-of slow oscilla-
tions made. by Possio (reference 1) and further Jdiseusscd by
Tomnle and Jahn serve te brling out the .maln results., -

Thus from equation (20), for slow oscillations,

1 . 2mme 1
1

A+l ME-1MN+2 0 oo

£3 (M, k)

7, = ___l___ i Z | _ . ue _. A

The condition Mﬁ<M’ xo) = 0 1s shown plotted in fig-

ure 21, where the shaded area ig_the region in which the
instability 1s vpossible (negative Mh). The maximum
ranges for the parameters x5 and M 1n this region
are X, less than 2/3 and M 1less than 2.5 (and

greater than unity).

(It may be appropriate to mention that a similar
torsional instabllity is theoretlically indlicated sven -
in the subsonic (incompressible) case for positions of
thie axis of rotation between the leasding edge and the
quarter-chord point. However, the combination of
parameters required for this indlcated instability is
practically unattalnable.)

The torsional instebility may be studied more
fully in the genersl case., It is found that the range
of instablility for ths parameters Xq and M réemsins

essentlally as in the simple case (large l/k)_ but more
infcrmation may be obtained regardinz the critical
sneed and frequency, The moment equation 1s equivalent

to Aaa = 0, or to the two equations
QX - uraa + Ma(ﬁ, x0> =

Mh(M, xo) + gL, X

|
o

1l
(=]
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where the structural dampling coefficient in torsion gg
has been introduced as in reference 6. The critical

speed and frequency mey be studied as functlons of the
parameters x5, M, 8¢ &and the product combination prg®.

Results of & few selected calculations are shown plotted
in figure 22. Since instabillitles are indicated for the
range of near-sonic values (1< M< 1.58) it would
seem that a more comprehensive investigation of thils
problem 18 very desirable.

It may be remarked that a similar enalysis for purs
bending exhlibits no instabili ty while the case of the
alleron alone does exhibit a range where such instabllity
may occur. This range for an alleron hinged at 1lts leading

edge is 1< MS 2.

Langley Memorlal Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., May 29, 1946
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APPENDIX
SYMBOLS
o] disturbance velocity potential
t time at which dlsturbance influence is felt
T time at which disturbance 1s created
T=%t ~T
o) pressurs ] -
p! pressure difference
p density
v adigbatic index (for air, y = 1.h)
v veloclty of main stream (supersonic)
e veloclty of sound in undisturbed medium i
M Mach number (v/c¢)
X coordinate measured in direction of main strcocam
N ordinatse |
Xy absclssa of axls of rotatlion of wing section
(elastic axis)
xq absclissa of alleron hinge
S, T gbsclissa and ordinate of point of dlsturbance
b one-half chord

After equation (12) the quantitles =z, ¥y, Xn, xé,
and & are employsd nondimensionally and are reférre
to the chord 2b as reference length.

w(x, t) vertical velocity at position =x on chord and
at time ¢t
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N
Co

h vertical diaplacement of exls of rotation
a angular displacement about axis of rotation
B angular dlsplacement of. aileron me gsured wlth
respect to ‘a
w angular freguency of oscillation
k reduced frequency (wb/v)
/ 2
o frequency parameter —égﬁ—-
M2 - 1

I(&, x) functlion given in equations (12) and (12')

T (A) Bessel function of order (n . S S
The following addlitlional symbols, employed in the

flutter equatlons, conform ta the notatlon used in rafer-

ences I and 6 1in which ths half- ohord b 1is the unit
refersnce length. ,

M mass of wing per unilt spah

S statlic moment of wing-alleron comblnatlon per
unit span referred to the elastic axls

Sﬁ statlic moment of alleron per unit span referred
to alleron hilnge

Iq moment of 1lnertla of wingralleron combinatiocn
about elastic axis per;unlt span

I moment of 1lnertia of aileron about its hinge per

e unlt span S :

a coordinate ,0f elastic =@xls measured from mid-
chord (2x ~ 1)

c coordinate of ailleron hi ée'axis measured from
the midchord -szl - ET

Xy location of center of gravity of wing-alleron

system measured from elastic axis Sa/Mb;

location of center of gravity in percent

total chord measuared from leadina edge

1 + a + Xy -
1s 100 : = 100 X +~-
2 "0

I
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reduced location of ,center of gravity of aileron

*p
referred to ¢ Sg/Mb
Ty radius of gyration of wing-alleron combination .
referred to =a -z
\, Mb2
r reduced radius of gyration of alleron referred o
® I,
to ¢ ——FZ‘-
Mb
Cq torsional stiffness of wing around a per unilit
spen ' ) ’ ’ a .
C@ - borsional stiffness of alleron system around ¢
per unlt span _
Ch stiffness of wing in deflection ) L
W, natural angular f;equency of torsional vibrations shout
—
elastic axis (/f); <‘Da = 2nfy, where fg
a,
1s in cycles per second)
w natural anguler frequency of torsional vibrations

b | os

of ailleron around c¢ ‘ £
3 Ig
Wy natural engular frequency of wing in deflec- _ _
%
tion y )
) Tpb2 o
) =~F L wing density parameter, where K = " L
J0K .

is the ratio of a mgss of cylinder of ailr of
a dlameter equal to the chord of the wing to
the mass of the wing, both taken for equal
length along the spen; this ratio may be

expressed as K= O.Eh(bg/W)(p/bo) where W

is the welght in pounds per foot span, b 1is
in feot and p/p. 1s the ratio of air density
at altitude to tBat for normal standard air

QL oMl
L“pr K
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€qs B3> Ehn structurgl demping cogfficients (see refer-
ence 6) _

Ll’LE’L5’Lu’M1’M2’M51Mu quantilities defined in table IT
and by equations (26) and (28)

flutter coefficient; that is, flutter spesd
divided by referends spsed bw,

L {0g)2 :
o “raa<zﬁ) ;

v/bw

Il

QX

-~ (g \2
QgX = “r@L(Z?)
2
o w?)
Qh.}(—p.w

where @ _1s the angular (flutter) frequency ang

2
% = pr 2(?2)
* a w

for case of bending-torsion (Wots that in ths incom-
pressible case (referencss /L and 6) g is replaced
by 1/4.) :

tok J ill

ih ..
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TABLE I,- VALUES OF f£4(M, ) = (fo) + 1(fo)1

42

- — 1
) £ (fo)a (to): 3 i (fO)R (fO)I
10 0
M= = M= =
9 7
20.00| 0,526 0. 02102622 -0,14998785 || 20,00 0.,196] 0,01041793 -o o 473581
10.00| 1.053| .10786366 | -.21774161 10,00 .532 =,027900 7 18976570
8.00{ 1.316 .15&2339; -.21616721 || 5.00 o7 13 30 .557 8972
6.00] 1.754 .1759 -.27930133 3.90| 1,006 .15 gg -.35707165
«00]| 2.105] .2336 «306238 3,10] 1.265| .19688319 | -. 5&3286
«20| 2,506 .2692790 -.29526037 2.40) 1.630 .3231774) | -.53918653
3.20 3.289 .27020078 ?299556 | 2,00| 1,961 008 .567863 6
2.50 .211 53905 36757 1.60| 2.51 . 012790 ?g gga 3
2.10{ 5.013 .4 60905 752217 1.18. 0323 g 2
1.68] 6.266 E 882 ué g 172 g - u13781
1.40] 7.519 .5 3 - 8895719 z 5.028 -88158 -.35721
#+10| 9.569 .755 625u hh 2| 6.325] 923 23 -.29325
52| 20.2L3 g 553 52| TeShl .9%5 -.250038
26| Lo.B% h512 Z.128%88 Jo| 9. og 7310 .195&28
«10[105.263 .9976 -.0h9910 «20| 19,60 .991755 gh25
10 53.216 997930 «049930
Ol «039! 2999675 - ,020000
M= =
; 3
20,00] 0.278|=0.0258903). | -0.08629977 {| 20,00} 0.,156] 0, 00827ahz -0,07001922
10,00 «556] 0252 6gh -.2239959 10,00 312} - - 13&391h3
oo 1.111] .190043 «331.9985 g 5.00 62 .07303312 -.32L65T7
1.263 .2153922 .323 5270|! %.10| 1.008} .1570019L | -.h913302
3. go 1.68L] .228L3569 «569221 2,50 1.250| .28500372 | =-.57L5
1.98L .265 o7 2 392085 | 1.90| 1.645| .48L00601 | ~-.601178L1
.ao 2.,525] 381 %h .51518210 1.60 1.353 .52329796 -.57737682
1.66 E'BAZ 557683 -.532 1.30] 2.0 g _gu -.52373582
1.34 | L.bel . Z 777 E 0823 .9% 3.524 .839Li83 -.h19702
1.10[ 5.051 .g 855505 g 50 .Z 112} .892157 ~.352880
l88 6.513 e 60 g Y 2 5.01-'-0 0926978 e 5089
.7% 7.508] 886947 .35 397 .ﬁg 6.250] «95192 -.2[2110
o5 9.921] .933477 -.266032 . 7.110] 565855 -.205300
.28 19,841 .982907 -.138218 32| 9.766) .5800L7 -.15791
1% 39.683| 4995700 -+069779 161 19.531| .99L97 -.07973
06| 92.593] 4999200 -,025983 .08 39,062| .99873 ~.03%9962
Ol | 78.125) 599675 ~.020000
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TABLE I.- VALUES OF £o(M, B) = (fo); + 1(£o); - Concluded

NACA TN No. 1158

- 1 - 1
w x (e o)R (¢ 01 w £ (z o)g (r o)I
M=2 =5
20,00f 0,133|-0,015,48798 |=0,06337016 {{20,00| 0,10l |-0,18 6 |=0.06011 8
10,00 267 -.005§Z79 r oeiigl 7 10,00 «20 .003%9295 -.12707 !
5400 .sgg .007822 2 -.29 ii5 +00 .hlz -l 620 .1755%
2.70 «9 .2150615 - 5875 «20 419 -.1 Z .55 002
2.10 1.220 .%11 9770 | ~.63550l, 2,10 992 | 1111225 g 031505
1,60 1.667] .606 ly | -»59698731 || 1.,70] 1.22 «5807235 5552507
«30{ 2.051 .72252 -.Za 66358. 1.20| 1.7 73 0710 =.52771202
1.10| 2a.42, .5336 265 | =.[;7882893 || 1.00| 2.083 08297 - 15716891
.80 3.535 .885888 - 371721 8L 2.480 -.394511
06&. -l6g l922626 -.305350 062 0560 095 -;2)9 626
.Z% %.9& .9% 567 -.261128 .&g «167 .95 080 -.2532
Ji2) 'ﬁ 9| 967381 -e2057 ‘ %.960 Oi -.206750
36| T OZ .9559&7 -e1773 Z .5% 127 7% | -.168271
«26| 10,2 +987392 =12 g «28.] T.ulL0 .986729 ~.139032
.1% tz.o 8] .996329 -+069803 «20 | 10117| .99%215 -.099645
«0 Ll 999333 -+029963 «10| 20,335 ( .998300 =.049960
0021133,333] 499950 - ,010000 <06 ] 3L.722| 4999383 -.026983
. 002 104,167 | .999950 -.010000
= i = 1—0
=2 M 3
20,00[ 0,119} 0.00671539 ko, 75&8 20,00| 0,110- 0.00960890 -o. 304109
10,00 «23 .02216359 -.o 10.00 220 .025090 0| - 76219
«00 1761 =405520172 .25 «00 JHi0 | =,11086610 233
.80 JA196 .05938671 -.27691360 ) #5001 =.121385l; .31 8051
2.40 «992) 42970677 -65925550 2.20 *999 -5703h955. .689565],
1.90 1,253 9182 91 -.65290 é 1.80] 1,221 - 59689
1.0 1.701 9153 99 -.571268 1 1.301 1.691 33h5
1.20] 1.984 19653 168 212 1,10( 1,998 ooo .+9025 86
.96 20 80 .88 20 98 .871351 -
72 3.507 .909 60 -.5 120 .66 ¢330 | 4926118 -.51665
.Eg 205 L9L0 gu -.2 008 . «227 1 953675 -.253427
. %.960 .95 guago . «995 .96667Z -.215005
«38 «266 -.1 % ‘o e10 5760 -.177806
32  T7.440 .9 1697 -.15831 301 Te32 -. 148727
o2l 9'821 .989672 -.119288 22| 9.990 .9915 5 -.109,95
«12{ 19,841 .597L0 -.059908 10| 21,978| .5982 -.049950
«06] 39,6 g +999350 -+029983 06| 36,630 .999367 -+029983 -
.02{119.0, +999950 =.010000 -02 {109. 890 4995950 -.010000
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NACA TN No. 1158 Figs. 1,2

, Vv
Y
NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS.
Figure 1.- . Mach angle ¢ . The disturbance at point ($,1) moving forward with
supersonic velocity v influences the angular region having half vertex angle N
p= gin-1&,
v
_____ _(.xﬂ':r)
P A
(£,0,T+7

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

Figure 2.- Influence of impulse created at point (£,0) at ime t = T on a point
(x,y) fixed relative to (£,0) and moving with supersonic velocity v. (Observe
1t_hs£t¥e )disturbance influences the point (x,y) only during the time interval

2 1. . . . -



Far

Figs. 3,4 N : . NACA TN No. 1158 ,

Figure 8.~ Sketch showing that only disturbances created forward of the Mach
angle reglion with vertex at &,, can atfect (x,y).
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Figure 4.- Sketch 1llustrating the three degrees of freedom h,a, and B of the _ R —
oscillating eirfofl.
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Figure 5.- The flutter coefficlent against center-of-gravity location for several positions of elastic axis
and for three values of the frequency ratio. M = 159-; b= 8.927.
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Figure 6.- The flutter coefficient against center-of-gravity location for several positions of elastic axis

and for three values of the frequency ratio. M = 19—0; p= 17854,
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(b) and {¢) Measured from elastic axis.

Figure 7.~ The flutter coefficlent against center-of-gravity location for several positions of elastic axis

and for three values of the frequency ratio. M = lgo; k= 15.708.
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Canter-of-gravity location, percent chord
(a) Measured from leading edge.

(b) and (c) Measured from elastic axis.
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Figure 8,- The flutter coefficient against center-of-gravity location for several positions of elastic axis

and for three values of the frequency ratio. M =

7;

®= 3.927.
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(b) and (¢) Measured from elastic axis.

Figure 9.- The flutter coefficient against center-of-gravity location for several positions of elastic axis
and for three values of the frequency ratio. M = 1,?—; u= 7.854.
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(b) and (¢} Measured from elastic axis.

Figure 10.~ The flutter coefficient against center-of-gravity location for several positions of elastic axis

and for three values of the frequency ratlo. M = 1—:; k= 15,708.
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Figure 11.- The flutter coefficient against center-of-gravity location for several positions of elastic axis
and for three values of the frequency ratio. M = 2; § = 3.927.
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Figure 12.~ The flutter coefficlent against centsr-of-gravity location for several pesitions of elastic axis

and for three values of the frequency ratio, M = 2; 1= 7.854.
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Figure 13.- The flutter coefficient agalnst center-of-gravity Jocation for several positions of elastic axis
and for three values of the frequency ratio. M = 2;& = 15.708, .
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Figure 14,~ Tue flutier coefficient against center-of-gravity location for several positions of elastic axis

and for three values of the frequency raFo. M= 5 p = 3,027
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Figure 15.- The flutter coefficlant against center-of-gravity location for several positions of elastic axis
and for three values of the frequency ratio. M = 5: k= 7.804.
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Center -of-gravity location, percent chord NATIONAL ADVISORY

(a) Measured from leading edge. COMMITTEE FOR AERONAUTICS.
(b) and (c) Measured from elastic axis,

Figure 16.- The flutter coefficient against center-of-gravity location for several positions of elastic axls

and for three values of the frequency ratio. M = 5; u = 15.708.
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Figure 17.- The flutter coefficient ageinst Mach number for two locations of

©
the center of gravity. Other parameters are -1;;5 = 0,707; a = O;
b = T7.8b4. ' '
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Figure 18.- The flutter coefficient against Ma.ch num_ber for several values of
K. Other parameters are -mw%:- =0; g = 0.3; & = 0.
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Figure 19.- The flutter coefficient against frequency ratio for several values of
M. Other paramseters are a = 0; %, = 0.2; p = 7.8%4."
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Figure 20.- The flutter coefficient aga.inst-_frequency ratio for three values of

X
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Other parameters are M = %?—; a= 0;u= 7.854.
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Figure 21.~ Plot of Ma(Myzx,) = 0.
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(8) Flutter coetficlent against axis~

af-rotation position for several
values of M (# = 15.708).
Note that the range of X,
narrows with increase in M
and disappears &t M = 1.88
and xz, = 0.33.
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(b) Flutter coefflcient against tor-

sional damping coefficient for
two values of x, (M = 190—;

p = 15.708). Negative damping
values are shown dashed and
have no physical existence.
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(¢) Flutter coefficient against wing--

density parameter i for

several values of x5 (M = -ng-.),
The straight-line curve shown
corresponds to Mg = 0

{x, = 0.327).

Figure 22.- Curves for one-degree-of-freedom torslonal instability.
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